A New Fiddler Crab of Austruca Bott, 1973, Closely Related to A. perplexa (H. Milne Edwards, 1852) (Crustacea: Brachyura: Ocypodidae), from the South Pacific Islands

Hsi-Te Shih¹,* and Joseph Poupin²

¹Department of Life Science and Research Center for Global Change Biology, National Chung Hsing University, Taichung 402, Taiwan.
*Correspondence: E-mail: htshih@dragon.nchu.edu.tw (Shih)
²Ecole Navale, CC 600, 29240 Brest Cedex 9, France. E-mail: joseph.poupin@ecole-navale.fr (Poupin)

Received 25 December 2019 / Accepted 20 May 2020 / Published 6 July 2020
Communicated by Benny K.K. Chan

A new species of fiddler crab, Austruca citrus n. sp. from Fiji, Wallis & Futuna, and Samoa, in the South Pacific is described based on morphological and molecular evidence. This species is closely related to Austruca perplexa (H. Milne Edwards, 1852), but can be distinguished by a suite of characters, including adult size, carapace morphology, shape and coloration of the major chela, the ratio of major pollex length as a function of carapace width, and male first gonopod form. The molecular evidence of the mitochondrial 16S rDNA and cytochrome oxidase subunit I (COI) supports these morphological differences.

Key words: Fiddler crabs, Austruca perplexa, A. citrus, New species, 16S rDNA, Cytochrome oxidase subunit I.

BACKGROUND

Fiddler crabs of the genus Austruca Bott, 1973 are small crabs with a wide front, inhabiting the sandy or muddy sand sediments in the upper intertidal zones of the Indo-West Pacific (Bott 1973; Crane 1975; Shih et al. 2016b). There are three groups in this genus: A. lactea complex (8 spp.), A. variegata (= A. triangulatuer) complex (3 spp.) and A. sindensis (Shih et al. 2016b 2019). Crane (1975) considered the A. lactea complex to be a single species, Uca lactea, with four subspecies, which were raised to the specific level in Ng et al. (2008a): A. annulipes (H. Milne Edwards, 1837), A. lactea (De Haan, 1835), A. mjoebergi (Rathbun, 1924) and A. perplexa (H. Milne Edwards, 1852). Four species were added, viz. A. albimana (Kossmann, 1877), A. cryptica (Naderloo, Türky & Chen, 2010), A. iranica (Pretzmann, 1971) and A. occidentalis (Naderloo, Schubart & Shih, 2016) (Shih et al. 2009 2016b; Naderloo et al. 2010 2016). According to the phylogeny of Shih et al. (2016b), these species can be divided into three subgroups: (1) A. albimana, A. annulipes, A. cryptica, A. iranica, A. occidentalis; (2) A. lactea, A. perplexa; and (3) A. mjoebergi.

Of these species, Austruca perplexa is widely distributed in the West Pacific and the East Indian oceans (Crane 1975; Shih et al. 2009 2016b; Naderloo et al. 2010). The taxonomy of A. perplexa, however, needs to be discussed here as it is closely related to the new species recognized here. Gelasmus perplexus H. Milne Edwards, 1852 was described based on an unspecified number of specimens (H. Milne Edwards 1852: 150, pl. 4(18); Fig. 2A) with the following brief description: “Espèce très voisine du G. annulipes, mais ayant le pouce de la grande pince beaucoup plus élevé et plus comprimé. - Java” [A species very similar with G. annulipes but having the dactylus of the major chela much higher and more compressed. Java]. This agrees
with his figure of the major chela (H. Milne Edwards 1852: pl. 4(18a)). Henri Milne Edwards (1852) also included his earlier record of "Gelasimus marionis" (see H. Milne Edwards 1837: 53) under the synonymy of his new species G. perplexus, redefining Gelasimus marionis Desmarest, 1823 s. str. as a separate taxon (H. Milne Edwards 1852: 145). Henri Milne Edwards’ (1837: 53) record of "Gelasimus marionis" was not accompanied by locality information or number of specimens. Gelasimus marionis s. str. is now a junior synonym of Gelasimus vocans (Linnaeus, 1758) (see Holthuis 1959: 115; Crane 1975: 89).

Alphonse Milne-Edwards (1873: 274), using specimens from New Caledonia, noted that G. perplexus, in addition to the high and more compressed major dactylus on the cheliped, also had a diagnostic strong predistal tooth on the pollex. Hilgendorf (1879: 806), however, believed that G. perplexus was identical to G. annulipes (cf. Fig. 2B), although he had received New Caledonian specimen(s) from A. Milne-Edwards (ZMB Crust. 4300, the Museum für Naturkunde, Berlin). Hilgendorf’s treatment was followed by De Man (1888: 118). Gelasimus perplexus was also treated as the "western form" of G. annulipes by Nobili (1906a: 312; Red Sea) (= Austruca albimana (Kossmann, 1877)) and Nobili (1906b: 151; Persian Gulf) (= Austruca iranica (Pretzmann, 1971)). Serène (1973a: 138–139) suggested that the specimen examined by H. Milne Edwards (1852) was only a young male of G. annulipes, noting that it had a much smaller predistal pollex tooth, and that the high major dactylus of G. perplexus mentioned by H. Milne Edwards (1852) is a character also present in G. annulipes (cf. Serène 1973a: fig. 12).

Crane (1975: 295, 300–301) redefined Uca perplexa (as Uca lactea perplexa), separating it from Uca annulipes s. str. (as Uca lactea annulipes) by male chela characters (notably by the relatively wider proximal half of the dactylus and the larger predistal pollex tooth). This is the concept of Uca perplexa that is now followed by most workers (see the synonymy of U. perplexa later). Crane (1975: 298) examined two male syntype specimens in the MNHN: “2 males in same box with the label ‘Gelasimus perplexus M. Besukij Javae.’ They are listed as ‘types non spécifiés.’ Condition very poor, the specimens having been dried, wired, and somewhat crushed. It seems undesirable to designate a lectotype or neotype at present. The larger specimen, about 9 mm long with the propodus 27 mm, was relaxed; the gonopod is clearly of the form referred in the present study to the subspecies, U. lactea perplexa; the claws are also of characteristic shape. (!)"

There are indeed two supposed syntypes of G. perplexus in the MNHN collection, one rehydrated male (broken, carapace width (CW) 15–16 mm, propodus length (PL) 28.2 mm) and one dry male (CW 13.8 mm, PL 25.7 mm) (MNHN-IU-2008-10646 = MNHN-B.12005) (Fig. 3), both labelled as from M. Besukij, Java, Indonesia. The way the labels are written suggest “Besukij” is a person but it should be a location. “Besukij” is just an alternate spelling name for “Besuki”, a province in East Java (PKL Ng, personal communication). This location “Prov. Besukil” is also in the website for vascular plants in the MNHN (https://science.mnhn.fr/institution/mnhn/collection/p/item/list?lang=en_US&full_text= Heteropogon+contortus), for specimens collected there in 1845. Danièle Guinot in 1972 had examined the two specimens and her unpublished notes (placed with the specimens) note some problems. Their chelae do not match the drawing in H. Milne Edwards (1852: pl. 4(18)) (Fig. 2A) and while the chela in his plate 4(18) is right-handed, both supposed syntypes are left-handed (Fig. 3). The chela of the two supposed syntypes differ from H. Milne Edwards’ figure in having the dactylus and pollex both more elongate (vs. relatively shorter), the distal part of the dactylus is less prominently tapering (vs. sharply tapering to a slender structure), the pollex is not tapering gradually to the tip, being more or less of the same width along most of its length (vs. pollex gradually tapering proximally to distally), and the predistal tooth on the pollex is large and high (vs. small and low). Nevertheless, these were the specimens Crane (1975) used to define what she called Uca perplexa and these characters continue to be used today.

Although Crane (1975) regarded both specimens as types during her study in the MNHN, aided by Jacques Forest and Danièle Guinot, the differences between their chelae and what H. Milne Edwards (1852) originally figured cast doubt. The specimen on which the figure was based cannot be found and is almost certainly lost. Are the two extant specimens in the MNHN, both with the same catalogue number (MNHN B 12005) actually part of the original type series? One specimen is rehydrated and in very poor condition, with only parts of the carapace still present, and there is a question mark next to the type status. The labels associated with it are not the original. The major chela and gonopods, however, are still present (Figs. 3A–B, 6E–F). The second more intact specimen (Fig. 3D–E) has the original labels, one that says “Gelasimus marionis”, the other “Gelasimus perplexus”. The chelae of both specimens are almost identical (Fig. 3A, B, E).

Looking at the original descriptions and figures in H. Milne Edwards (1837 1852) for Gelasimus perplexus and all the available evidence still extant, we are of the opinion that the more intact dried specimen (MNHN-B.12005) is almost certainly one of the syntypes. We are less certain about the type status of
the other specimen as it has less associated information. As discussed above, the specimens H. Milne Edwards (1837: 53) had identified as “Gelasimus marionis” from an unspecified location were later referred to as the new species G. perplexus. Since H. Milne Edwards (1852) did not select a holotype for Gelasimus perplexus, all the material of “Gelasimus marionis” reported by H. Milne Edwards (1837) as well as any specimens he may have had with him (none were indicated at that time) in 1852 must be regarded as syntypes. The fact that the more intact MNHN specimen still had the original label identifying it as “Gelasimus marionis” and has a second label with the name “Gelasimus perplexus” is very indicative. It is important to note here that H. Milne Edwards (1852: 150) distinguished G. perplexus from G. annulipes by just one character – whether the dactylus of the cheliped is higher and more compressed. He never mentioned the other features of the fingers or the size of the predistal tooth on the pollex, not using them as characters. The two MNHN specimens possess this character: the proximal part of the dactylus is distinctly higher and slightly more compressed compared to typical specimens of G. annulipes. That H. Milne Edwards’ (1852: pl. 4(18)) figure of the chela shows shorter and more tapering fingers with a small predistal pollex tooth is actually of secondary importance. Henri Milne Edwards (1852) thus almost certainly identified all his Javanese specimens with a higher dactylus to G. perplexus on this basis. It was A. Milne Edwards (1873: 274) who used the proportionately larger predistal pollex tooth as a character and identified New Caledonian specimens as G. perplexus, and he would very likely have also examined H. Milne Edwards’ (1852) specimens as well, including the two present MNHN specimens (although he made no mention of them).

We therefore here select the more intact male (CW 13.8 mm, PL 25.7 mm) (MNHN-B.12005) from Besukil, Java as the lectotype of Gelasimus perplexus H. Milne Edwards, 1852. This selection will ensure stability as it will preserve how the name is widely used in the future. The other presumptive syntype is here recognized as the paralectotype for the time being. The morphology of the lectotype of Gelasimus perplexus as defined here agrees with that of Uca annulipes var. orientalis Nobili, 1901 (p. 13, fig. A; type locality Buntal, Kuching, Sarawak, Malaysia) (Fig. 2C), especially in the large predistal pollex tooth and the high major dactylus from the base to the position of the adjacent predistal pollex tooth. The two taxa are thus clearly subjective synonyms. Serène (1973a: 138) considered A. perplexa (as Uca annulipes var. orientalis) to be an “intermediate form” of A. annulipes for specimens from Phuket, Singapore and Sulawesi, although he identified material from New Caledonia as “Uca (Minuca) lactea”, probably because the specimens were small (max. CW 16.8 mm).

The shape of the major dactylus and the large predistal pollex tooth of the two specimens (Fig. 3A, B, E) are also typical of the large specimens examined (e.g., Fig. 8B, CW 14.9 mm; Crane 1975: fig. 18D–F), except in the case of regenerated major chelae (e.g., Fig. 8A, CW 17.3 mm; Fig. 8D, CW 12.0 mm) and the major chelae of young crabs (e.g., Fig. 8C, CW 12.5 mm; Fig. 8D). The G1 of the rehydrated (Fig. 6E, F) is within the range of variation of specimens from different regions (Crane 1975: fig. 19C–H).

As discussed before, G. perplexus H. Milne Edwards, 1852 has been identified as G. annulipes H. Milne Edwards, 1837 (Hilgendorf 1879; De Man 1888; Nobili 1906a b; Serène 1973a), if only based on the drawing of the major chela (H. Milne Edwards 1852: pl. 4(18)). As a result, the East African Austruca occidentalis (Naderloo, Schubart & Shih, 2016), a species very similar with A. annulipes, with only minor difference in minor chela and G1 (Naderloo et al. 2016), cannot be G. perplexus H. Milne Edwards, 1852 as well.

The synonymization of Gelasimus perplexus H. Milne Edwards, 1852 under G. chloropthalmus H. Milne Edwards, 1837 by Kingsley (1880: 151–152) is not correct, because the morphology of the oblique ridge on inner palm between them is different (much higher with tubercles largest on highest point of the Austruca lactea complex (H. Milne Edwards 1852: pl. 4(15b, 16); Forest and Guinot 1961: fig. 151) vs. lower with few tubercles restricted on the lower apex of Paraleptuca (H. Milne Edwards 1852: pl. 4 (17a, 19, 20a); Forest and Guinot 1961: figs. 140–142, 146) (cf. Crane 1975: 98, 293).

Due to their similar morphology and coloration, the three common West Pacific species, A. annulipes, A. lactea and A. perplexa, are easily confused and the taxa may have been misidentified in various reports (see Crane 1975: 301–303). For example, after A. perplexa (as different names, see synonymy in A. perplexa) was confirmed to be distributed in Taiwan (Fukui et al. 1989), several old records of A. lactea were revised as A. perplexa, including in the offshore islands of Penghu and Dongsha (see Shih et al. 2015a: 190). In addition, A. perplexa was always identified as A. annulipes in many Singaporean booklets (Ng and Sivasothi 1999: 76; Ng et al. 2007: 75–76; Ng et al. 2008b: 102). Similarly, several old records of “A. annulipes” and “A. lactea” in Micronesia (Sakai 1936 1976; Miyake 1938 1939, 1940a b) should be referred to as Paraleptuca crassipes (White, 1847) and A. perplexa, respectively. This is based on the distribution and collecting records for the A. lactea complex (Crane 1975: 611–612, map 21; Takeda and Ueshima 2006).
Within the distribution of *A. perplexa*, Crane (1975: 295, figs. 19B, 20A–C, 41B) emphasized that the easternmost population (i.e., from Samoa and Fiji) possesses several different characters, including the coloration of the major cheliped, relative width of the major dactylus, presence of a predistal triangular tooth on the major pollex, possession of tuberculate ridge on the major pollex, and the structures of the distal parts of both posterior and anterior flanges on the male first gonopod. Accordingly, we examined specimens from the easternmost populations and other populations, as well as the supposed syntypes of *A. perplexa* (MNHN-IU-2008-10646).

The fresh series of specimens now also show that the material from Fiji, Wallis & Futuna, and Samoa, while superficially similar to *A. perplexa* as defined here, are nevertheless sufficiently different morphologically to be recognized as a separate taxon. This distinction is supported by molecular evidence from the mitochondrial 16S rDNA and cytochrome oxidase subunit I (*COI*). We therefore propose that a new species be recognized from Fiji and the eastward islands, described herein as *Austruca citrus* n. sp.

MATERIALS AND METHODS

The systematics of the family Ocypodidae (including the fiddler crabs) revised by morphology as well as mitochondrial and nuclear markers (Shih et al. 2016b) is followed in this study (also see Sasaki 2019). Another system proposed recently (Rosenberg 2019) of splitting the subfamily Ocypodinae into Ocypodinae and Uciniae is not followed because the subfamily Uciniae he recognized was wholly based on an assumption that it may be monophyletic in the future. This is not supported by current available genetic data (Shih et al. 2016b).

Specimens of *Austruca perplexa sensu lato* were collected from localities in East Asia, Southeast Asia, and Oceania (Table 1; Fig. 1) and preserved in 70–95% ethanol. Specimens deposited in museums or institutes were also examined: Australian Museum, Sydney, Australia (AM); Biodiversity Research Museum, Academia Sinica, Taiwan (ASIZ); Museum National d’Histoire Naturelle, Paris, France (MNHN); Museum Zoologicum Bogoriense, West Java, Indonesia (MZB); Museo Zoologico dell’Università di Firenze, Italy (MZUF); Zoological Collections of the Department of Life Science, National Chung Hsing University, Taichung, Taiwan (NCHUZOOL); Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, Taiwan (NTOU); Naturalis Biodiversity Center (formerly Rijksmuseum van Natuurlijke Historie), Leiden, The Netherlands (RMNH); Senckenberg Museum, Frankfurt am Main, Germany (SMF); Queensland Museum, Brisbane, Australia (QM); Florida Museum of Natural History, University of Florida, Florida, USA (UF); and Zoological Reference Collection, Lee Kong Chian Natural History Museum, National University of Singapore (ZRC).

Morphological characters were illustrated with the aid of a drawing tube attached to a stereomicroscope. The abbreviation G1 is used for the male first gonopod. Measurements, in millimeters (mm), are of the carapace width (CW), carapace length (CL) and propodus length (= pollex length + manus length; PL) of the

Table 1. The haplotypes of *COI* and 16S rRNA genes of *Austruca citrus* n. sp. and *A. perplexa* (H. Milne Edwards, 1852), as well as the outgroups, from the Indo-West Pacific region. See MATERIALS AND METHODS for abbreviations of museums and universities

<table>
<thead>
<tr>
<th>Species</th>
<th>Localities [site no.]</th>
<th>Catalogue no. of museum</th>
<th>Sample size</th>
<th>Haplotype of COI</th>
<th>DDBJ Access. no.</th>
<th>Sample size</th>
<th>Haplotype of 16S</th>
<th>DDBJ Access. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. citrus n. sp.</td>
<td>Fiji: Viti Levu [1]</td>
<td>UF 1488; NCHUZOOL 15037</td>
<td>5</td>
<td>Ac-C1</td>
<td>LC508734</td>
<td>5</td>
<td>Ac1</td>
<td>LC508752</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNHN IU-2017-9122, IU-2017-9123, NCHUZOOL 14912, 15035</td>
<td>5</td>
<td>Ac-C2</td>
<td>LC150400</td>
<td>5</td>
<td>Ac2</td>
<td>LC150339</td>
</tr>
<tr>
<td></td>
<td>Wallis & Futuna [2]</td>
<td>MNHN IU-2017-9122</td>
<td>1</td>
<td>Ac-C3</td>
<td>LC508735</td>
<td>1</td>
<td>Ac3</td>
<td>LC508753</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MNHN IU-2017-9123</td>
<td>1</td>
<td>Ac-C4</td>
<td>LC508736</td>
<td>1</td>
<td>Ac4</td>
<td>LC508754</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMF 5675</td>
<td>1</td>
<td>Ac5</td>
<td>LC150339</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMF 5675</td>
<td>1</td>
<td>Ac6</td>
<td>LC508755, LC508756</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2020 Academia Sinica, Taiwan
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>Localities [site no.]</th>
<th>Catalogue no. of museum</th>
<th>Sample size</th>
<th>Haplotype of COI</th>
<th>Sample size</th>
<th>Haplotype of 16S</th>
<th>DDBJ Access. no.</th>
<th>DDBJ Access. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. perplexa</td>
<td>Japan: Okinawa [4]; Iriomote [5]</td>
<td>NCHUZOOL 14646, 14648, 14652, 14654; NTOU; NCHUZOOL 13252, 14636, 14639, 14643, 14647, 14649, 14674, 14677</td>
<td>6</td>
<td>Ap-C1</td>
<td>7</td>
<td>Ap1</td>
<td>AB471915</td>
<td>AB471901</td>
</tr>
<tr>
<td></td>
<td>Indonesia: Sulawesi [17, 18]; Bali [19]; Lombok [19]; Maluku [20]; West Papua [22]</td>
<td>NCHUZOOL 13252</td>
<td>1</td>
<td>Ap-C1</td>
<td>1</td>
<td>Ap1</td>
<td>AB471915</td>
<td>AB471901</td>
</tr>
<tr>
<td></td>
<td>Palau [16]</td>
<td>ZRC 2020.0287</td>
<td>1</td>
<td>Ap-C1</td>
<td>1</td>
<td>Ap1</td>
<td>AB471915</td>
<td>AB471901</td>
</tr>
<tr>
<td></td>
<td>Japan: Okinawa [4]</td>
<td>NCHUZOOL 14642</td>
<td>1</td>
<td>Ap-C1</td>
<td>1</td>
<td>Ap1</td>
<td>LC508737</td>
<td>LC508760</td>
</tr>
<tr>
<td></td>
<td>Japan: Iriomote [5]</td>
<td>NCHUZOOL 14648</td>
<td>1</td>
<td>Ap-C1</td>
<td>1</td>
<td>Ap1</td>
<td>AB471915</td>
<td>LC508757</td>
</tr>
<tr>
<td></td>
<td>Taiwan: Pingtung: Baoli R. estuary [6]</td>
<td>NCHUZOOL 13253</td>
<td>1</td>
<td>Ap-C1</td>
<td>1</td>
<td>Ap4</td>
<td>AB471902</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indonesia: Bali [19]</td>
<td>NCHUZOOL 15060</td>
<td>1</td>
<td>Ap-C6</td>
<td>1</td>
<td>Ap6</td>
<td>LC508739</td>
<td>LC508760</td>
</tr>
<tr>
<td></td>
<td>Indonesia: Lombok [19]</td>
<td>ZRC 2009.0933</td>
<td>1</td>
<td>Ap-C1c</td>
<td>1</td>
<td>Ap1</td>
<td>LC508740</td>
<td>LC508760</td>
</tr>
<tr>
<td></td>
<td>Indonesia: Maluku: Ambon [20]</td>
<td>SMF 24578</td>
<td>1</td>
<td>Ap-C7</td>
<td>1</td>
<td>Ap7</td>
<td>LC508741</td>
<td>LC508761</td>
</tr>
<tr>
<td></td>
<td>Indonesia: West Papua: Waigeo I. [21]</td>
<td>MZB Cru 1685</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malaysia: Sarawak: Kuching [23]</td>
<td>NCHUZOOL 15046</td>
<td>1</td>
<td>Ap-C2b</td>
<td>1</td>
<td>Ap2</td>
<td>LC508742</td>
<td>LC508763</td>
</tr>
<tr>
<td></td>
<td>Indonesia: Sumatra: Medan [27]</td>
<td>MZB Cru 3669</td>
<td>1</td>
<td>Ap-C2f</td>
<td>1</td>
<td>Ap2</td>
<td>LC508748</td>
<td>LC508763</td>
</tr>
<tr>
<td></td>
<td>Papua New Guinea: Milne Bay [28]</td>
<td>UF 2333</td>
<td>1</td>
<td>Ap-C11</td>
<td>1</td>
<td>Ap11</td>
<td>LC508749</td>
<td>LC508766</td>
</tr>
<tr>
<td></td>
<td>Australia: Queensland [29]</td>
<td>QM W18212</td>
<td>1</td>
<td>Ap-C12</td>
<td>1</td>
<td>Ap12</td>
<td>LC508750</td>
<td>LC508767</td>
</tr>
<tr>
<td></td>
<td>Australia: Queensland: Urangan [31]</td>
<td>QM W19270</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>outgroups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. lactea</td>
<td>Hong Kong</td>
<td>NCHUZOOL 13250</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>AB471912</td>
<td>AB471988</td>
</tr>
<tr>
<td></td>
<td>South Korea: Incheon</td>
<td>NCHUZOOL 13251</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>AB471913</td>
<td>AB471989</td>
</tr>
<tr>
<td>A. iranica</td>
<td>Iran: Hormozgan</td>
<td>NCHUZOOL 13245</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>AB471908</td>
<td>AB471896</td>
</tr>
<tr>
<td>A. albimana</td>
<td>Egypt: Sinai: Nabq-El Arwashie</td>
<td>NCHUZOOL 13242</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>AB471906</td>
<td>AB471893</td>
</tr>
<tr>
<td>A. annulipes</td>
<td>Malaysia: Johor: Mersing: Tioman I.</td>
<td>NCHUZOOL 13243</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>AB471907</td>
<td>AB471894</td>
</tr>
</tbody>
</table>
major cheliped. The morphological terminology used essentially follows that of Crane (1975) and Davie et al. (2015). The gastric mill of the stomach was studied following the methods and terminology in Shih (2015). The scanning electron microscopy (SEM) mainly followed Shih et al. (1999).

Genomic DNA was isolated from the muscle tissue of legs using the GeneMark tissue and cell genomic DNA purification kit (Taichung, Taiwan). A region of approximately 510–550 base pairs (bp) of the 5’-end of the 16S rRNA gene was selected for amplification with a polymerase chain reaction (PCR) using the primers 1471 and 1472 (Crandall and Fitzpatrick 1996). A portion of the COI gene was amplified with PCR using the primers LCO1490, COL14, HCO2198 and COH6 (Folmer et al. 1994; Roman and Palumbi 2004; Schubart and Huber 2006). The PCR conditions for the above primers were denaturation for 50 s at 94°C, annealing for 70 s at 45–47°C, and extension for 60 s at 72°C (40 cycles), followed by another extension for 10 min at 72°C. Sequences were obtained by automated sequencing (Applied Biosystems 3730) and aligned with the aid of the MUSCLE function of MEGA (vers. 10.0.5, Kumar et al. 2018), after verification with the complementary strand. Sequences of different haplotypes have been deposited in the DNA Data Bank of Japan (DDBJ), with other sequences published in earlier papers of HTS (Table 1).

The best-fitting model for the COI dataset was obtained from jModelTest (vers. 0.1.1, Posada 2008) selected by the Bayesian information criterion (BIC) and was subsequently applied for the Bayesian inference (BI) analysis. BI was performed with MrBayes (vers. 3.1.2, Ronquist et al. 2012), and the search was run with four chains for 10 million generations, with trees sampled every 1000 generations. The chains were deemed to have converged when the average standard deviation of split frequency values fell below the recommended 0.01 (Ronquist et al. 2019), with the first 5000 trees accordingly discarded as burnin. The maximum likelihood (ML) analysis was calculated by MEGA, with the model GTR+I+G and 2000 bootstrap replications (heuristic method = nearest-neighbor-interchange (NNI), initial tree = default-NJ/BioN, branch swap filter = Moderate). A maximum parsimony (MP) consensus tree was also constructed using MEGA, with 2000 bootstrap

Fig. 1. Collection sites for specimens of Austruca citrus n. sp. and A. perplexa (H. Milne Edwards, 1852) used in this study: blue solid squares (nos. 1–3) for A. citrus and pink solid circles (nos. 4–33) for A. perplexa (see Table 1). Blue empty square and pink empty circles indicate additional records of the two species from other references (see synonymy under A. perplexa). Different lines indicate the updated ranges of the two species.
reiterations of a simple heuristic search, TBR branch-swapping (tree bisection-reconnection) (100 random-addition sequence replications; max no. of trees to retain = 10000). Other analyses of 16S rDNA and COI, the nucleotide composition, variable and parsimony informative positions were calculated using MEGA; and the pairwise estimates of Kimura’s (1980) 2-parameter (K2P) distance for inter- and intraspecific genetic diversities were calculated using the PAUP program (vers. 4.0b10, Swofford 2003).

For morphometric analyses, the following measurements of males (except the specimens with apparent regenerated short cheliped) were used: CW and PL. Because the CWs of male specimens from the Fiji-Samoa region ranged from 8.3 to 14.6 mm, the measurements of specimens with CW between 8.3–14.6 mm from other areas were analyzed separately. Three groups of specimens were used in the analyses: 38 males (CW 6.7–17.5 mm) of all A. perplexa and 135 males of A. perpexa with CW between 8.3–14.6 mm. The regression lines of PL on CW were calculated for the three groups and their slopes and intercepts were compared by one-way ANCOVA (analysis of covariance) using the software PAST (vers. 3.2.3, Hammer et al. 2001).

RESULTS

TAXONOMY

Family Ocypodidae Rafinesque, 1815
Subfamily Gelasininae Miers, 1886 (sensu Shih et al. 2016b)
Genus Austruca Bott, 1973

Austruca perplexa (H. Milne Edwards, 1852)
(Figs. 2A, C, D, 3, 5A, C, 6E–I, 7A–C, F, G, 8A–D, 9A–C, 10)

Gelasimus annulipes – Kingsley 1880: 148 [part; Australia]. (not Gelasimus perplexus H. Milne Edwards, 1852: 150, pl. 4(18) [type)

Austruca perplexa – Nobioli, 1901: 13, fig. A [type locality: Buntal, Kuching, Sarawak, Malaysia]; Nobili 1903: 21 [Indonesia: Samarinda, Kalimanda Timur]; Maccagno 1928: 36; fig. 21 [Malaysia: Buntal, Kuching, Sarawak]; Nobili 1906b: 151 [Malay Archipelago]; Oliveira 1939: 131 [list; Bornéo]; Uca perplexa – Ratbun 1910: 306; pl. 1(–2) [Indonesia: Mulaku; Sulawesi]; Ratbun 1924: 10; Barnwell 1980: 957 [central Philippines; Indonesia: Jakarta]; Davie 1982: 205 [Australia]; George and Jones 1982: 83, figs. 6, 7b, 54a–f; 58e [Australia]; Takeda 1982: 209 [Japan: Ryukyu]; Ho et al. 1993: 20 [Taiwan: Taitung]; Yamaguchi and Baba 1993: 506 [Japan: Okinawa];

Uca annulipes subsp. orientalis – Tesch 1918: 37 [list].

Austruca orientalis – Bott 1973: 322 [list].

Uca (Minuca) lactea – Seréna 1973a: 132, figs. 5–7, 23–29, pls. 5, 7A, C, D [New Caledonia]. (not Ocypode (Gelasimus) lactea De Haan, 1835).

Uca annulipes – Ng and Sivashothi 1999: lower image on p. 76 [Singapore]; Ng et al. 2007: upper image on p. 75, lower image on p. 76 [Singapore]; Ng et al. 2008b: upper right image on p. 102) [Singapore]. (not Gelasimus annulipes H. Milne Edwards, 1837).

Uca perplexa – Nhuong 2003: 8 [southern Vietnam].

Uca (Paraleptuca) perplexa – Beinlich and von Hagen 2006: 26 [list; part]; Ng et al. 2008a: 241 [list; part]; Rahayu and Setyadi 2009: 106, 1 unnumbered fig., 1 fig. on p. 104 [Indonesia: Papua]; Murimati and Pratiwi 2015: 71, 2 unnumbered figs., figs. 6.1, 8.12A, 8.13A [Indonesia].

Uca (Celuca) perplexa – Naderloo et al. 2010: 24, figs. 16a–g, 17a, b, 18c–f [part; west of Fiji]; Toyota and Seki 2014: 226, 4 unnumbered figs. [Japan: Ryukyu]; Shih et al. 2016a: 62, fig. 2C–E [Taiwan; Japan: Ryukyu].

Austruca perplexa – Shih et al. 2015a: 189, figs. 152–156 [Taiwan]; Shih et al. 2016b: 153, 168, fig. 8F [part; Taiwan; New
Material examined: lectotype, δ (dry, CW 13.8 mm, PL 25.7 mm) (MNHN-IU-2008-10646 = MNHN-B.12005), M. Besukkiil, Java, Indonesia. Paralecotype, 1 δ (rehydrated, broken, CW ~15–16 mm, PL 28.2 mm), same data as lectotype.

Diagnosis: Male. Carapace (Figs. 3D, 5A, 7A–C) subrectangular, smooth; front broad; anterolateral angles (= external orbital angles) triangular, directed anterolaterally; anterolateral margins moderately convergent, short; dorsolateral margins clear, long. Major cheliped (Figs. 2C, D, 3A, B, E, 5C, 8A–D) without groove on outer fingers; pollex narrower than dactylus for entire length, with moderate to large predistal triangular tooth; dactylus wider at base, narrower toward distal part, then arched and tapering in position of adjacent predistal pollex tooth. G1 (Fig. 6E–I) with strong torsion; thumb moderately long, reaching flange base, distal parts of both flanges broad, posterior flange longer, broader than anterior. Urocardiac ossicles of gastric mill (Fig. 9A–C) moderately complex, with 3 or 4 pairs of transverse ridges of median tooth, separated by gaps reached deeply near central ridge, on posterior tooth plate; 2 pairs of cusps on stem region.

Female: Carapace (Fig. 7F–G) with anterolateral region swollen, anterolateral angle sharper triangular, directed anterolaterally.

Size: Largest male CW 37.5 mm, CL 19.5 mm, PL 11.5 mm (Ryukyus); largest female CW 16.0 mm, CL 10.0 mm (Singapore) (Crane 1975).

Color in life: Adults with carapace marbled with brown (or dark brown) and white;
entire major chelipeds from pink, yellow to yellowish white; fingers white; walking legs marbled with brown and white; most females with carapace and legs with homogenous white or brownish yellow (Fig. 10).

Distribution: Indo-West Pacific: Nicobar Islands, Indonesia, Malay Peninsula, Borneo, Thailand, Cambodia, Vietnam, Taiwan, Japan, Philippines, Palau, New Guinea, Australia, Solomon and New Caledonia (Fig. 1).

Remarks: See Remarks under *Austruca citrus* for the differences between *A. perplexa* and the closely related *A. citrus* n. sp.

Austruca citrus n. sp.

(Figs. 4, 5B, D, E, 6A–D, J, 7D–E, H, 8E–H, 9D, 11, 12A, B)

urn:lsid:zoobank.org:act:55512189-203E-4987-8368-770DC6BD02C9

Gelasimus annulipes – Miers 1886: 244 [part; Fiji]; Ortmann 1894: 758 [Samoa].

Uca lactaea [sic] – Pesta 1913: 57 [Samoa].

Uca lactea – Balss 1938: 76 [Fiji].

Uca (Celuca) lactea perplexa – Crane 1975: 292, figs. 18D–F, 19B, 20A–C, 26D, 31E, 54K, KK, 69C, pl. 39E–F [part; Samoa; Fiji].

Uca (Paraleptuca) perplexa – Beintlich and von Hagen 2006: 26 [list; part]; Ng et al. 2008a: 241 [list; part].

Uca perplexa – Poupin and Juncker 2008: 35, fig. 9C [Wallis & Futuna]; Poupin 2010: 75 [part; Wallis & Futuna]; Weis and Weis 2013: fig. 1 [Fiji].

Uca (Austruca) perplexa – Naderloo et al. 2010: 24 [part; Fiji; Tonga; Samoa].

Austruca (Austruca) perplexa – Rosenberg 2019: 734 [list; part].

Fig. 2. Illustrations of syntypes of *Gelasimus perplexus*, *G. annulipes* and *Uca annulipes* var. *orientalis* (A–C), and specimen of *A. perplexa* from Borneo (D). A, *Gelasimus perplexus* H. Milne Edwards, 1852 (after H. Milne Edwards 1852: pl. 4(18a)); B, *Gelasimus annulipes* H. Milne Edwards, 1837 (after H. Milne Edwards 1852: pl. 4(15b)); C, *Uca annulipes* var. *orientalis* Nobili, 1901 (after Nobili 1901: fig. A); D, specimen from Buntal, Kuching, Sarawak, Malaysia (after Maccagno 1928: fig. 21).
Fig. 3. The syntypes of *Gelasimus perplexus* H. Milne Edwards, 1852 (MNHN-IU-2008-10646). A–C, male paralectotype, rehydrated specimen; D–E, male lectotype, dry specimen. A, B, outer and inner surfaces of major cheliped (PL 17 mm); C, broken carapace, CW ~15–16 mm; D, carapace, CW 13.8 mm; E, outer surface of major cheliped, PL 25.7 mm.
holotype. (11.3–11.90 mm) (NCHUZOOL 15036), same data as
(11.6 mm) (NCHUZOOL 15037), Viti Levu I., coll. G.
22 Jul. 2019; 1 Suva point beach, Suva, coll. B. Y. Lee and B. Rashni,
(8.6–11.9 mm) (ZRC 2019.1319), Nasoso mangroves,
5675), Samoa, coll. Hauck, 1904.
Godeffroy, no date; 4 (11.5 mm) (SMF 17153), Upolu, Samoa, coll. Museum
region.
ridge, on posterior tooth plate; 2 pairs of cusps on stem
tooth, separated by gaps reached deeply near central
distal part of both flanges (Fig. 6A–D, J) with strong torsion; thumb moderately
fingers, about same width with adjacent fingers. G1
large tooth on occlusal margin, a large gap between
then tapering and arched distally. Minor fingers without
from base to position of adjacent predistal pollex tooth,
without groove on outer fingers; pollex narrower than
without groove on outer surface of ischium and merus, close
to inner margin. Male pleon (Fig. 4C) tapering from
somites 2–5, somite 6 with lateral margin nearly
straight. Major cheliped (Figs. 4B, 5D, E, 8E–H, 12B)
without groove on outer fingers; pollex narrower than
dactylus for entire length, with low, small to moderate
predistal triangular tooth; dactylus with same width
from base to position of adjacent predistal pollex tooth,
then tapering and arched distally. Minor fingers without
large tooth on occlusal margin, a large gap between
fingers, about same width with adjacent fingers. G1
(Fig. 6A–D, J) with strong torsion; thumb moderately
long, reaching flange base, distal parts of both flanges
narrow, posterior flange longer, broader than anterior.
Urocardiac ossicles of gastric mill (Fig. 9D) moderately
complex, with 4 pairs of transverse ridges of median
tooth, separated by gaps reached deeply near central
ridge, on posterior tooth plate; 2 pairs of cusps on stem
region.
Female: Carapace (Fig. 7H) with anterolateral
angle more broadly triangular, directed laterally.
Size: Largest male CW 12.9 mm, CL 7.9 mm, PL
25.6 (Fiji); largest female CW 11.7 mm, CL 7.4 mm
(Wallis & Futuna).
Color in life: Adults with carapace marbled with
brown (or dark brown) and white; entire major cheliped
chrome yellow, distal part of fingers white; walking
legs, minor cheliped, third maxillipeds, orbital areas
and pterygostomian regions always chrome yellow,
sometimes deep pink; some females with carapace and
legs with fine marbling of dark brown and gray (Figs.
11A–G, 12A, B).
Ecological and behavioral notes: High densities
of individuals were found on middle and high intertidal
zone of shelter shore, beside front mangroves with
muddy sand substrate (Figs. 11G, H, 12C), as well as
the interior flats along the tidal creek beside mangroves
with about 1 km from the sea (B. Y. Lee, personal
communication). The species has a unique aggressive
behavior, a short, rapid and horizontal wave, toward the
intruder which is different from the aggressive behavior
with vertical wave of A. perplexa in Australia (Crane
1975; How et al. 2007; Weis and Weis 2013).
Distribution: Fiji, Wallis & Futuna, Samoa and
probably Tonga (Fig. 1).
Etymology: The species name, Citrus, is from the
Latin name for the lemon, alluding the lemon-colored
major chela of the new species, which is very distinctive
in the field. The name is used as a noun in apposition.
Remarks: Austruca citrus n. sp. is close to A.
perplexa, but can be distinguished by the following
characters, including the maximum adult size of males
(CW 12.9 mm vs. CW 17.5 mm); the direction of the
anterolateral angles of the male carapace (lateral vs.
anterolateral) (Figs. 4A, 5B, 7D, E vs. Figs. 3D, 5A,
7A–C, 12A); the shape of anterolateral angles of the
female carapace (relatively more broadly triangular
vs. sharper triangular) (Fig. 7H vs. Fig. 7F–G); the
ratios of major pollex length on carapace width (large
vs. small; Fig. 13, see below); the major pollex (with
a low, small to moderate predistal triangular tooth vs.
with a moderate to large predistal triangular tooth) and
the major dactylus (with the same width from the base
to the position of the adjacent predistal pollex tooth vs.
withider at the base and narrower toward the distal part)
(Figs. 4B, 5D, E, 8E–H, 12B vs. Figs. 2C, D, 3A, B,
E, 5C, 8A–D); the distal parts of both flanges of the
G1 (narrow vs. broad) (Fig. 6A–D, J; Crane 1975: figs.
19B, 20A–C vs. Fig. 6E–I; Crane 1975: fig. 19C–H);
and the coloration of major cheliped (chrome yellow vs.
pink, yellow or yellowish white) (Figs. 11A–E, G, 12A,
B vs. Fig. 10A–F).
Crane (1975: figs. 19, 20A–C) illustrated the G1
variation of A. perplexa s. l. from different regions.
There is a pattern that the distal parts of both flanges are
broad in specimens from the Gulf of Siam, Singapore
and the Philippines; and narrow in those from Fiji and
Samoa, which agree with our observations (Fig. 6). The
distal part of the G1 from Australia in Crane (1975:
fig. 19D) seems narrow, which might be caused by the
specimens being small and/or figured from a different
angle, because our specimens from Queensland (QM
W19270) show this part as relatively broader (Fig. 6I).
The distal parts of both flanges can be considered as
a character to distinguish the two species, that is, it is
Fig. 4. Holotype of *Austruca citrus* n. sp. (MNHN-IU-2017-9121; CW 10.9 mm). A, dorsal view; B, major chela; C, pleon and telson; D, third maxillipeds. Scale bars: A, B = 5.0 mm; C, D = 2.0 mm.
Fig. 5. *Austruca perplexa* (H. Milne Edwards, 1852) (A, C) and *A. citrus* n. sp. (B, D, E). A, B, carapace; C–E, major chela. A, C, male (NCHUZOOL 15053; CW 15.6 mm, PL 25.6 mm; Negeri Sembilan, Malaysia); B, D, holotype of *A. citrus* (MNHN-IU-2017-9121; CW 10.9 mm, CL 6.7 mm, PL 17.6 mm; Wallis & Futuna); E, male (UF 3843; CW 12.9 mm, PL 25.6 mm; Fiji).
Fig. 6. G1s of *Austruca citrus* n. sp. (A–D, J) and *A. perplexa* (H. Milne Edwards, 1852) (E–I). A–D, G–J, right G1; E–F, left G1. A, E, mesial view; B, G–J, mesial view of distal part; C, F, lateral view D, lateral view of distal part. A–D, holotype, CW 10.9 mm, MNHN-IU-2017-9121, Wallis & Futuna; J, paratype, CW 12.0 mm, MNHN IU-2017-9123, Wallis & Futuna; E–F, paralectotype, MNHN-IU-2008-10646, CW ~15–16 mm, Java; G, CW 15.2 mm, ZRC 2020.0288, Singapore; H, CW 17.5 mm, NCHUZOOL 14636; I, CW 12.5 mm, QM W19270. Scale bars: A–D = 2.0 mm; G–J = 0.5 mm.
Fig. 7. Carapaces of male *Austruca perplexa* (H. Milne Edwards, 1852) (A–C, F, G) and *A. citrus* n. sp. (D, E, H). A, male, CW 17.3 mm (NCHUZOOL 15046), Kuching, Sarawak, Malaysia; B, male, CW 12.5 mm (QM W19270), Queensland, Australia; C, male, CW 12.0 mm (ZRC 1995.966), Queensland, Australia; D, male, CW 12.7 mm (MNHN-IU-2017-9123), Wallis & Futuna; E, male, CW 11.0 mm (UF 1488), Fiji; F, female, CW 13.7 mm (NCHUZOOL 14643), Tainan, Taiwan; G, female, CW 11.3 mm (NCHUZOOL 15052), Selangor, Malaysia; H, female, CW 11.7 mm (MNHN-IU-2017-9122), Wallis & Futuna.
broad for *A. perplexa* (Fig. 6A–D, J) and narrow for *A. citrus* (Fig. 6E–I).

The character of the urocardiac ossicles of the gastric mill is sometimes useful to separate species or genera of fiddler crabs (Naderloo et al. 2010; Shih 2015; Shih et al. 2015b, 2016b, 2019), but the three or four pairs of transverse ridges of the median tooth in both *A. perplexa* and *A. citrus* (Fig. 9) can only be considered as within the range of variation.

DNA analyses

A 567 bp segment (excluding the primer regions) of 16S rDNA from 70 specimens (excluding the outgroups) was amplified and aligned. Of these, 112 positions were variable and 85 parsimony informative, with 20 different haplotypes distinguished (Table 1). The studied segment of the 16S rRNA sequences was AT rich (71.1%) (T, 36.3%; A, 34.8%; G, 18.2%; C,
Fig. 9. Urocardiac ossicles of *Austruca perplexa* (H. Milne Edwards, 1852) (A–C) and *A. citrus* n. sp. (D). A, male, CW 13.6 mm (NCHUZOOL 15056), Mersing, Malaysia; B, male, CW 14.2 mm (NTOU), Taitung, Taiwan; C, male, CW 12.5 mm (QM W19270), Queensland, Australia; D, male, CW 11.1 mm (MNHN-IU-2017-9122), Wallis & Futuna. Scale bars = 0.2 mm.
Fig. 10. *Austruca perplexa* (H. Milne Edwards, 1852). A–F, male; G–H, female. A, E, CW 14.9 mm (NCHUZOOL 15057), Singapore; B, CW 12.0 mm (NCHUZOOL 15042), Bohol, Philippines; C, specimen not collected, Penghu, Taiwan; D, H, specimens not collected, Dongsha, Taiwan; F, CW 12.0 mm (NCHUZOOL 15060), Bali, Indonesia; G, CW 9.7 mm (NCHUZOOL 15050), Kuching, Sarawak, Malaysia.
For the **COI** gene from 67 specimens (excluding the outgroups), a 658-bp segment was compared (except the haplotype “Ap-C2f” with 616 bp), resulting in 21 different haplotypes (Table 1). The studied segment of the **COI** sequences was also AT rich (63.2%) (T, 35.1%; A, 28.0%; G, 17.5%; C, 19.3%). In this gene fragment, 174 positions were variable and 133 were parsimoniously informative.

The best model selected for the **COI** dataset is the HKY + G model (TRatio = 6.3137, gamma distribution shape parameter = 0.123). The phylogenetic tree of **COI** from the BI analysis, with the posterior probability and bootstrap values from the BI and MP analyses on the main nodes, is shown in figure 14. Based on the tree, *Austruca perplexa* s. l. is monophyletic with high branch support, and sister to *A. lactea*, with two clades corresponding to *A. perplexa* s. s. and *A. citrus* n. sp.

The pairwise nucleotide divergences for 16S rDNA and **COI** (in parentheses) with K2P distance and differences in the total bp numbers (gaps considered in 16S) are shown in tables 2 and 3, respectively. The interspecific K2P distances of 16S rDNA and **COI** of *A. citrus* n. sp. are 1.73% (1.29%–2.42%) and 4.59% (3.78%–5.28%) with the closest *A. perplexa*; and the numbers of bp differences between the two species are 11.08 (8–16) and 28.85 (24–33), respectively (Tables 2, 3).

Some specimens only have 16S rRNA sequences as the PCR of the **COI** failed. From the 16S sequences, specimens from the Samoa and Solomon Islands belong to the clades of *A. citrus* and *A. perplexa*, respectively (Table 1).

Morphometric analysis

The PLs were plotted against the CWs for the males of three groups. The ANCOVA results show that the regression lines of *A. citrus* and *A. perplexa*, as well as the lines of *A. citrus* and *A. perplexa* with CW between 8.3–14.6 mm, differ significantly both in intercept (P-values = 0.016 and 0.03, respectively) and slope ($P = 0.039$ and $P = 0.037$, respectively). It is clear that, for a given CW of *A. citrus* (about 10–14.6 mm), the PL is longer than that of *A. perplexa* (Fig. 13). The
largest specimen of *A. citrus* (Fiji, ZRC 2019.1317) is CW 14.6 mm, with PL 27.5 mm and the specimens with similar size (CW 14.4–14.7 mm) of *A. perplexa* have a PL of 20.8–26.9 mm (*n* = 7). The largest male of *A. perplexa* (CW 17.5 mm; Okinawa, Japan, NCHUZOOIL 14646) has a PL of 34.6 mm.

DISCUSSION

Crane (1975) noted that the populations of *Austruca perplexa* s. l. in Samoa and Fiji differed from others in the western Pacific in several distinct features. These characters include the intense chrome yellow major cheliped (Crane 1975: 295), the wide major dactylus breadth and large predistal triangular tooth on major pollex (Crane 1975: fig. 41B and figure legend), some individuals with tuberculate ridge on major pollex (Crane 1975: 295), and the narrower distal parts of both posterior and anterior flanges of the G1 (Crane 1975: figs. 19B, 20A–C). The results of our study support Crane’s observations with additional anatomical characters and molecular data. As a result, *Australus citrus* is here recognized as a new species from Fiji, Wallis & Futuna, and Samoa.

The characters distinguishing the two closely related species (see Remarks under *A. citrus*) include the maximum adult size of males, the direction of the anterolateral angles of male carapace, shape of anterolateral angles on the female carapace, the ratios of major pollex length on carapace width (also see below), the structures of the major pollex, major dactylus and distal parts of both flanges of the G1, as well as the life color of major cheliped.

The morphometric comparison of the major propodus length (PL) with the carapace width (Fig. 13) showed *A. citrus* has a longer PL than *A. perplexa* of similar sizes. For example, the largest specimen (CW 12.9 mm) of *A. citrus* (from Fiji) has a PL 25.6 mm (UF 3843), but a specimen (CW 13.0 mm) of *A. perplexa* (from Solomon) only has a PL 22.5 mm (AM P98278); and a specimen (CW 15.6 mm) (from Negeri Sembilan,
Fig. 14. A Bayesian inference (BI) tree for *Austruca citrus* n. sp. and *A. perplexa* (H. Milne Edwards, 1852), with outgroups of other congeneric species, based on cytochrome *c* oxidase subunit I (*COI*) gene. Probability values at nodes represent support values for BI, maximum likelihood (ML) and maximum parsimony (MP). For haplotype identities, see table 1.

Table 2. Matrix of percentage pairwise nucleotide divergences with K2P distance (lower left) and mean number of differences (upper right) based on 16S rDNA within and between species of *Austruca perplexa* (H. Milne Edwards, 1852), *A. citrus* n. sp., *A. lactea* (De Haan, 1835), *A. annulipes* (H. Milne Edwards, 1837), *A. iranica* (Pretzmann, 1971), and *A. albimana* (Kossmann, 1877). Range values are shown in parentheses.
Malaysia) has the same PL 25.6 mm (NCHUZOOl 15053).

Also, the recognition of the two species is supported by the phylogenetic tree using COI (Fig. 14) as well as the genetic divergence of COI and 16S rDNA among taxa (Tables 2, 3). The minimum interspecific divergence of COI between A. citrus and A. perplexa is 3.78%, which is similar to that between Tubuca urvillei (H. Milne Edwards, 1852) and T. alcocki Shih, Chan & Ng, 2018 (Shih et al. 2018) and higher than the 3.62% difference between Gelasimus hesperiae (Crane, 1975) and the “Clade U” as well as the 2.79% difference between Paralectuca crassipes (White, 1847) and P. splendida (Stimpson, 1858) (Shih et al. 2010 2012; Chu et al. 2015).

Biogeographically, the distribution of A. citrus in Fiji and eastwards is similar to that of Gelasimus excisa (Nobili, 1906) (≡ G. neocultrimana (Bott, 1973), see Rosenberg 2019) (Shih et al. 2010). This implies there may be a marine barrier blocking the larval dispersal between the western margin of the Pacific and Fiji. This is worth investigating in the future with a number of other benthic species.

While the eastern boundary of A. perplexa is now in the Solomon Islands, Vanuatu and New Caledonia (Fig. 1), the western boundary of the species remains less clearly defined. Crane (1975: 612, map 21) included a “small series” of A. perplexa from Pondicherry in southeastern India. However, she considered this n. sp., citrus (De Haan, 1835), A. lactea (Stimpson, 1858) (Shih et al. 2010 2012; Chu et al. 2015).

Table 3. Matrix of percentage pairwise nucleotide divergences with K2P distance (lower left) and mean number of differences (upper right) based on COI within and between species of Austruca perplexa (H. Milne Edwards, 1852), A. citrus n. sp., A. lactea (De Haan, 1835), A. annulipes (H. Milne Edwards, 1837), A. iranica (Pretzmann, 1971), and A. albimana (Kossmann, 1877). Values of range are shown in parentheses

<table>
<thead>
<tr>
<th></th>
<th>A. perplexa</th>
<th>A. citrus</th>
<th>A. lactea</th>
<th>A. annulipes</th>
<th>A. iranica</th>
<th>A. albimana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intraspecific</td>
<td>Mean nucleotide difference</td>
</tr>
<tr>
<td>A. perplexa</td>
<td>0.69 (0–1.98)</td>
<td>4.45 (0–12)</td>
<td>14.6 (14.15–15.44)</td>
<td>15.55 (15.05–16.83)</td>
<td>15.55 (14.53–16.23)</td>
<td>15.55 (14.53–15.23)</td>
</tr>
<tr>
<td>A. citrus</td>
<td>0.81 (0–1.7)</td>
<td>5.28 (0–11)</td>
<td>14.58 (13.94–14.71)</td>
<td>15.59 (14.48–14.68)</td>
<td>15.59 (14.43–15.82)</td>
<td>15.59 (14.48–15.82)</td>
</tr>
<tr>
<td>A. lactea</td>
<td>0.15 (0–11)</td>
<td>1 (0–11)</td>
<td>14.6 (14.15–15.44)</td>
<td>15.88 (15.05–16.83)</td>
<td>15.88 (14.53–14.83)</td>
<td>15.88 (14.53–15.82)</td>
</tr>
<tr>
<td>A. annulipes</td>
<td>15.55 (14.53–15.82)</td>
<td>15.88 (15.05–16.83)</td>
<td>16.96 (16.44–17.71)</td>
<td>17.08 (16.44–16.83)</td>
<td>17.08 (16.86–17.06)</td>
<td>17.08 (16.86–17.06)</td>
</tr>
<tr>
<td>A. iranica</td>
<td>16.96 (16.44–17.71)</td>
<td>17.08 (16.44–16.83)</td>
<td>17.82 (16.86–17.06)</td>
<td>17.82 (16.86–17.06)</td>
<td>17.82 (16.86–17.06)</td>
<td>17.82 (16.86–17.06)</td>
</tr>
<tr>
<td>A. albimana</td>
<td>17.82 (16.86–17.06)</td>
<td>17.82 (16.86–17.06)</td>
<td>17.92 (17.74–17.92)</td>
<td>17.92 (17.74–17.92)</td>
<td>17.92 (17.74–17.92)</td>
<td>17.92 (17.74–17.92)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

In our study, a new species of fiddler crab, Austruca citrus n. sp., closely related to A. perplexa, is described from Fiji and eastwards in the South Pacific based on the evidence of morphology (adult size, carapace morphology, shape and coloration of the major chela, the ratio of major pollex length as a function of carapace width, and G1 form) and molecular data (mitochondrial 16S and COI). As a result, the distribution of A. perplexa is from the western boundary of the Andaman and Nicobar Islands to the eastern boundary of the Solomon Islands, Vanuatu and New Caledonia. In addition, the taxonomy of Gelasimus perplexus H. Milne Edwards, 1852 is discussed based on the available evidence from descriptions, figures,
Acknowledgments: This work and the new species names have been registered with ZooBank under urn:lsid:zoobank.org:pub:0149F3F7-A6E4-4159-8E73-38A4075B37B2. This study was supported by a grant from the Ministry of Science and Technology (MOST 108-2621-B-005-002-MY3), Executive Yuan, Taiwan, to HTS. Collections from Wallis & Futuna were supported by a grant from CRISP New Caledonia, coordinator E. Clua, with the help of M. Juncker, C. Manry, A. Malau and E. Lufau for field collections. Thanks are also due to Gustav Paulay (Florida Museum of Natural History), Peter K. L. Ng, Lee Bee Yan (National University Singapore), Peter J. F. Davie (Queensland Museum), Shane Ahyong and Stephen Keable (Australian Museum), Bertrand Richer de Forges (New Caledonia), late Michael Türkay (Senckenberg Museum), Gianna Innocenti (Museo Zoololgico dell’Università di Firenze), A. Sasekumar (University of Malaya), Daisy Wowor and Dewicitra Murniati (Indonesian Institute of Sciences) for providing important specimens; to HTS’s laboratory for helping in molecular work, measurements and gastric mill photographs; to Rocio Gajon Bunker, Mark Rosenstein and Lee Bee Yan for providing photographs and ecological information from Fiji; and to Carl Thurman for comments on an earlier version of the manuscript. We acknowledge the help of Peter K. L. Ng and Shane Ahyong with the manuscript.

Authors' contributions: HTS conceived this study, performed the morphological description and the molecular analysis, and drafted the manuscript. JP collected and processed the samples, performed the discussion and drafted the manuscript. Both authors read and approved the final manuscript.

Competing interests: The authors declare that they have no conflict of interests.

Availability of data and materials: Sequences generated in the study have been deposited in the DNA Data Bank of Japan (DDBJ) database (accession numbers in Table 1 in the manuscript).

Consent for publication: Not applicable.

Ethics approval consent to participate: Not applicable.

REFERENCES

Fukui Y, Wada K, Wang CH. 1989. Ocypodidae, Mictyridae and...
Grapsidae (Crustacea: Brachyura) from some coasts of Taiwan. J Taiwan Mus 42:225–238.

Takeda M, Ueshima R. 2006. Crabs preserved in the Department of Zoology, the University Museum, the University of Tokyo. Catalogue of Invertebrate Collection Deposited in the Department of Zoology, the University Museum, The University of Tokyo. Univ Mus Univ Tokyo Mat Rep 62:61–105. (in Japanese)

